Geheimnisvolle WN8-Sterne

Martin Quast

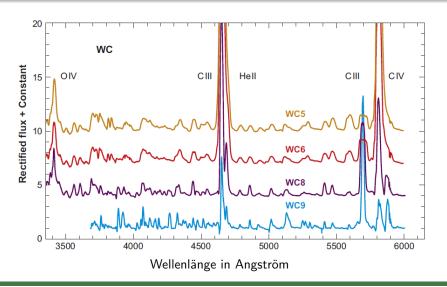
Argelander-Institut für Astronomie Bonn Theoretische Sternphysik Prof. Norbert Langer

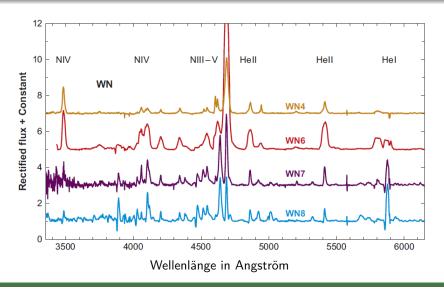
20. Mai 2017

Wolf/Rayet (1867):

Sterne mit sehr breiten, dominanten Emissionslinien

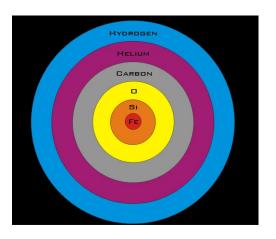
Typische Eigenschaften:


$$M \sim 10-250 \,\mathrm{M}_{\odot}$$


$$L~\sim~10^6\,{
m L}_\odot$$

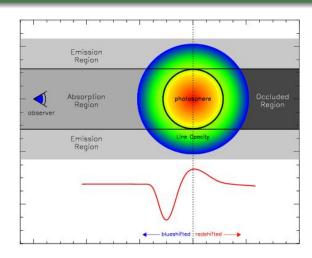
$$T_{
m eff}~\sim~30-200\,{
m kK}$$

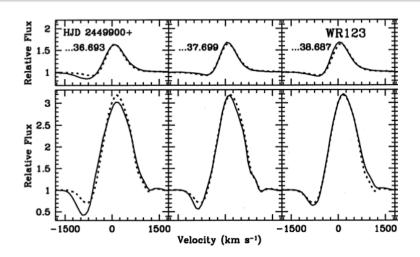
$$\dot{M}~\sim~10^{-5}~{
m M}_{\odot}{
m yr}^{-1}$$



Erklärung:

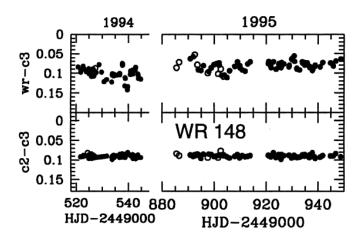
- CNO-Zyklus bzw. He-Brennen erzeugen Elemente N bzw. C im Kern.
- Starker Sternwind bzw. Doppelsterninteraktion legt den Kernfrei.

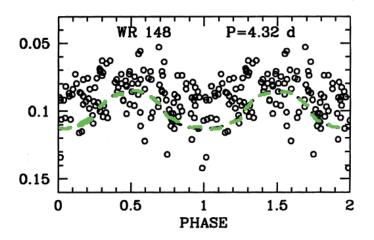



P-Cygni-Profil:

Blau verschobene Absorptionslinie

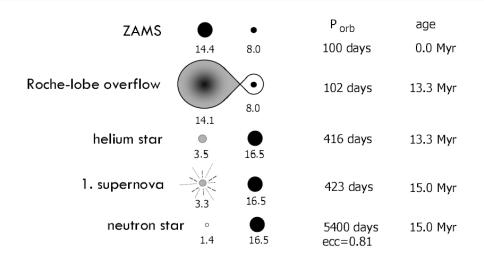
Nicht verschobene, breite Emissionslinie


Aufspaltung $\propto v_{\infty}$

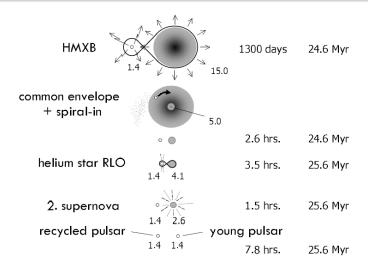


- 1. Selten in Sternhaufen
- 2. Relativ weit von galaktischer Ebene entfernt
- 3. Große Eigengeschwindigkeit (Runaway stars, Supernova?)
- 4. Selten OB-Begleiter (im Gegensatz zu WN6/7)
- 5. WR-Sterne mit größter (stochatischer) Veränderlichkeit

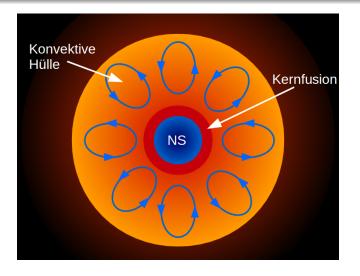
Name	SpekTyp	V	α	δ	Periode	Amplit.
		mag	hh mm	0 /	d	mmag
WR 40	WN8h	7.85	11 06	-65 30	Var.	Irreg?
WR 98	WN8o	12.51	17 37	-33 28	Var.	Irreg.
WR 105	WN8/9h	12.51	18 02	-23 35	4.13	19
WR 116	WN8h	13.38	18 27	-12 23	5.78	43
WR 120	WN7o	12.30	18 41	-4 26	6.9	42
WR 123	WN8o	11.26	19 04	-4 19	multi.	-
WR 124	WN8h	11.58	19 12	16 52	4.45, 1.70	19, 17
WR 132	WN8h	12.60	19 59	31 27	4.16	17
WR 148	WN8h	10.46	20 41	52 35	4.32	30
WR 156	WN8h	11.09	23 00	60 56	15.6	23



- Doppelstern-Interaktion?
 Nein: Keine Dopplerverschiebungen. Multiperiodizität.
- Wind-Clumping?
 Nein: Streuung der Polarisation zu klein. Verhalten im nahen IR.
- 3. Selten OB-Begleiter (im Gegensatz zu WN6/7)
- 4. Amplitude und Periode zeigen keine Korrelation mit M , L , T_{eff} oder \dot{M} .
- 5. Marchenko et. al (1998): Multimoden Oszillation im Kern. Woher?


- 1. Selten in Sternhaufen
- 2. Relativ weit von galaktischer Ebene entfernt
- 3. Große Eigengeschwindigkeit (Runaway stars)
- 4. Selten OB-Begleiter (im Gegensatz zu WN6/7)
- 5. WR-Sterne mit größter (stochatischer) Veränderlichkeit

Sind WN8-Sterne Thorne-Zytkow Objekte?


Massereiche DS (Tauris & van den Heuvel 2006) WN8-Sterne

Massereiche DS (Tauris & van den Heuvel 2006) WN8-Sterne

Thorne-Zytkow Objekte (Foellmi et al. 2007) WN8-Sterne

- 1. TZO erklären einige besonderer Eigenschaften der WN8-Sterne
- 2. TZO ähneln roten Überriesen $T_{\rm eff} \sim 3000\,{\rm K}$ (Evtl. Wasserstoff-Hülle abgezogen?)
- 3. In der Kernfusionszone sollten andere Elemente entstehen (Cannon 1992/ Biehle 1994)
- 4. Entwicklungszenario nach Quast & Langer (2017; in prep.)
- 5. Es fehlen immer noch Langzeit-Daten (Lichtkurven/Spektren), seit 2007 kaum professionelle Forschung.
- 6. Zukünftig interessante Objekte für Spektroskopie/Polarimetrie?